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Transverse Spin Asymmetries 

𝑥 = 2𝑝
𝑠  6 

 In (collinear) pQCD AN suppressed by 𝑚 𝛼 /𝑝  

Asymmetries are expected to be zero? 

Second spin crisis:  
transverse effect not small!

AN predicted to be small by 
collinear pQCD 

AN ⇡ mq↵s

pT
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Forward Arms:

µ±
Tracking and Momentum for:

1.2 < |⌘| < 2.4

Even more forward:
MPC

3.1 < |⌘| < 3.9
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What generates these large 
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2.2. The interpretation of TMD

PDF probabilistic interpretation chiral properties

f q1 (x) chiral-even

gq1 (x) chiral-even

hq1 (x) chiral-odd

legend
transverse and longitudinal nucleon polarisation

transverse and longitudinal quark polarisation

Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)⇥![A+�,�+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"�"⇤| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum
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2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:
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The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
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cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
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Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)⇥![A+�,�+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"�"⇤| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum
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PDF probabilistic interpretation chiral properties
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Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)⇥![A+�,�+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"�"⇤| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum
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⇡0 (uū+ dd̄)
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• Which effect generates those large transverse 
asymmetries? 

• Can we access the initial state interaction (Sivers) and 
final state Interaction (Transversity x Collins) separately 
in hadron reaction?

• How is the factorization broken in hadron reactions?

• What asymmetries are generated by Transversity times 
IFF in forward direction?

• Does the Sivers effect generate opposite sign in SIDIS and 
DY, and which is its kinematic mapping?

Many open questions
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Figure B.2: A straw man layout of a possible detector for a future forward upgrade to
sPHENIX.

in order to minimize the missing energy in the event reconstruction. Currently, a “straw
man” design is being used for the purpose of sensitivity studies. This design divides
forward sPHENIX into a forward section, 1.2 < h < 3 and very forward region, 3 < h < 4.
Currently it is thought that there will be two sources of magnetic field. For the forward
region an extension or modification of the central solenoid could provide a sufficiently
strong tracking field. For the high momenta in the very forward region an additional
forward coil is foreseen to be able to reach acceptable momentum resolution. Gas Electron
Multiplier (GEM) detectors will provide charged particle tracking. Particle identification
is based on a Ring Imaging Cherenkov Detector. It believed that a hadronic calorimeter
with a modest energy resolution will energy smearing for Collins measurements in jets
within acceptable limits. The forward electromagnetic calorimeter may consist of a re-stack
of the current PHENIX electromagnetic calorimeters (EMCal) and the MPC-EX towers.
Early simulation results indicate that the performance of the EMCal will be sufficient. The
“straw man” design will form the basis of GEANT4 studies to better define and demonstrate
the capability of an sPHENIX forward upgrade to address the physics discussed in the
previous sections. It is anticipated that the details of the detector design and configuration
will undergo significant evolution during this process.

Finally, PHENIX will host a workshop sponsored by the RIKEN BNL Research Center
with the goal to further develop the physics case for future forward upgrades at RHIC
from July 30th to August 1st. The experimental feasibility of the proposed forward physics
case will be studied through GEANT4 based simulations and a final report with detailed
results from the study group will be available by the end of November 2012. Institutions
that are presently participating in the forward upgrades are Abilene Christian University;
Brookhaven National Laboratory; University of California, Riverside; CIAE, Beijing, China;
Georgia State University; Hanyang University, Seoul, Korea; University of Illinois, Urbana;
Iowa State University; KEK, Tsukuba, Japan; Korea University, Seoul, Korea; Los Alamos
National Laboratory; Muhlenberg College; New Mexico State University; University of
New Mexico; RIKEN Brookhaven Research Center; RIKEN Institute; Rikkyo University,
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region an extension or modification of the central solenoid could provide a sufficiently
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forward coil is foreseen to be able to reach acceptable momentum resolution. Gas Electron
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is based on a Ring Imaging Cherenkov Detector. It believed that a hadronic calorimeter
with a modest energy resolution will energy smearing for Collins measurements in jets
within acceptable limits. The forward electromagnetic calorimeter may consist of a re-stack
of the current PHENIX electromagnetic calorimeters (EMCal) and the MPC-EX towers.
Early simulation results indicate that the performance of the EMCal will be sufficient. The
“straw man” design will form the basis of GEANT4 studies to better define and demonstrate
the capability of an sPHENIX forward upgrade to address the physics discussed in the
previous sections. It is anticipated that the details of the detector design and configuration
will undergo significant evolution during this process.
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forward sPHENIX into a forward section, 1.2 < h < 3 and very forward region, 3 < h < 4.
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region an extension or modification of the central solenoid could provide a sufficiently
strong tracking field. For the high momenta in the very forward region an additional
forward coil is foreseen to be able to reach acceptable momentum resolution. Gas Electron
Multiplier (GEM) detectors will provide charged particle tracking. Particle identification
is based on a Ring Imaging Cherenkov Detector. It believed that a hadronic calorimeter
with a modest energy resolution will energy smearing for Collins measurements in jets
within acceptable limits. The forward electromagnetic calorimeter may consist of a re-stack
of the current PHENIX electromagnetic calorimeters (EMCal) and the MPC-EX towers.
Early simulation results indicate that the performance of the EMCal will be sufficient. The
“straw man” design will form the basis of GEANT4 studies to better define and demonstrate
the capability of an sPHENIX forward upgrade to address the physics discussed in the
previous sections. It is anticipated that the details of the detector design and configuration
will undergo significant evolution during this process.

Finally, PHENIX will host a workshop sponsored by the RIKEN BNL Research Center
with the goal to further develop the physics case for future forward upgrades at RHIC
from July 30th to August 1st. The experimental feasibility of the proposed forward physics
case will be studied through GEANT4 based simulations and a final report with detailed
results from the study group will be available by the end of November 2012. Institutions
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region an extension or modification of the central solenoid could provide a sufficiently
strong tracking field. For the high momenta in the very forward region an additional
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in order to minimize the missing energy in the event reconstruction. Currently, a “straw
man” design is being used for the purpose of sensitivity studies. This design divides
forward sPHENIX into a forward section, 1.2 < h < 3 and very forward region, 3 < h < 4.
Currently it is thought that there will be two sources of magnetic field. For the forward
region an extension or modification of the central solenoid could provide a sufficiently
strong tracking field. For the high momenta in the very forward region an additional
forward coil is foreseen to be able to reach acceptable momentum resolution. Gas Electron
Multiplier (GEM) detectors will provide charged particle tracking. Particle identification
is based on a Ring Imaging Cherenkov Detector. It believed that a hadronic calorimeter
with a modest energy resolution will energy smearing for Collins measurements in jets
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“straw man” design will form the basis of GEANT4 studies to better define and demonstrate
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within acceptable limits. The forward electromagnetic calorimeter may consist of a re-stack
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case will be studied through GEANT4 based simulations and a final report with detailed
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strong tracking field. For the high momenta in the very forward region an additional
forward coil is foreseen to be able to reach acceptable momentum resolution. Gas Electron
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is based on a Ring Imaging Cherenkov Detector. It believed that a hadronic calorimeter
with a modest energy resolution will energy smearing for Collins measurements in jets
within acceptable limits. The forward electromagnetic calorimeter may consist of a re-stack
of the current PHENIX electromagnetic calorimeters (EMCal) and the MPC-EX towers.
Early simulation results indicate that the performance of the EMCal will be sufficient. The
“straw man” design will form the basis of GEANT4 studies to better define and demonstrate
the capability of an sPHENIX forward upgrade to address the physics discussed in the
previous sections. It is anticipated that the details of the detector design and configuration
will undergo significant evolution during this process.

Finally, PHENIX will host a workshop sponsored by the RIKEN BNL Research Center
with the goal to further develop the physics case for future forward upgrades at RHIC
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case will be studied through GEANT4 based simulations and a final report with detailed
results from the study group will be available by the end of November 2012. Institutions
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region an extension or modification of the central solenoid could provide a sufficiently
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forward coil is foreseen to be able to reach acceptable momentum resolution. Gas Electron
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is based on a Ring Imaging Cherenkov Detector. It believed that a hadronic calorimeter
with a modest energy resolution will energy smearing for Collins measurements in jets
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Early simulation results indicate that the performance of the EMCal will be sufficient. The
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region an extension or modification of the central solenoid could provide a sufficiently
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forward coil is foreseen to be able to reach acceptable momentum resolution. Gas Electron
Multiplier (GEM) detectors will provide charged particle tracking. Particle identification
is based on a Ring Imaging Cherenkov Detector. It believed that a hadronic calorimeter
with a modest energy resolution will energy smearing for Collins measurements in jets
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Early simulation results indicate that the performance of the EMCal will be sufficient. The
“straw man” design will form the basis of GEANT4 studies to better define and demonstrate
the capability of an sPHENIX forward upgrade to address the physics discussed in the
previous sections. It is anticipated that the details of the detector design and configuration
will undergo significant evolution during this process.
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with the goal to further develop the physics case for future forward upgrades at RHIC
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case will be studied through GEANT4 based simulations and a final report with detailed
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